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Statistical inference in the Lexis diagram

By NievLs KrIpIiNG

Statistical Research Unit, Faculty of Medicine, University of Copenhagen,
Blegdamsvej 3, Copenhagen, Denmark, DK-2200

The Lexis diagram is a (time, age) coordinate system, representing individual lives
by line segments of unit slope, joining (time, age) of birth and death. The main theme
of this paper is non-parametric continuous-time statistical analysis on the Lexis
diagram, where I indicate some possible approaches within modern survival analysis.
I also introduce the history of the diagram, point processes on the diagram, and the
classical statistical approach based on piecewise constant intensities. The Lexis
diagram is also useful for describing morbidity, and the methodology is illustrated by
two Danish studies of diabetes incidence.

1. Introduction

The statistical description of occurrence of events (such as death or disease incidence)
in calendar time and age was facilitated by the graphical representation very
carefully discussed by Lexis (1875) and since then termed the Lexis diagram. This is
simply a coordinate system with calendar time (henceforth denoted ‘time’) as
abscissa and age as ordinate. Individuals are represented by line segments of slope 1
joining (time, age) at birth and at death, see figure 1. Deaths are represented by
points in this diagram and the deaths of a certain population could be seen as a
realization of a bivariate point process on the Lexis diagram. The purpose of this
presentation is to discuss the interpretation of a continuously varying (time, age)-
dependent mortality rate (death intensity) as the intensity of such a point process
and, in particular, the statistical estimation of this intensity.

The paper is organized as follows: §2 reviews Lexis’s original introduction and
discussion of the diagram. We also briefly survey recent contributions to
deterministic population mathematics (the ‘Lexis surface’) including useful
differential equations. In §3 the basic point process on the Lexis diagram is
introduced and a number of counting processes and associated martingales are
defined on it.

For statistical inference, a common procedure has been to assume the death
intensity piecewise constant; special generalized linear models called Poisson
regression models are then available, as surveyed in §4. A classical topic in this
framework is the decomposition of the (time, age)-dependent intensities into
products of contributions depending only on time and only on age (and perhaps a
third factor depending only on ‘cohort’, that is, birth time). The main topic of the
paper is non-parametric estimation in continuous time.

In §5 I indicate how various recent developments in non-parametric continuous-
time survival analysis might be adapted for this purpose, and I discuss particularly
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age

/

time

Figure 1. A Lexis diagram.

how far multiplicative decompositions of the type discussed in §4 are feasible in this
new framework.

So far the exposition has been in terms of mortality, but it is obvious that
morbidity may be studied by the same means. In §6 I illustrate some of the methods
discussed in the previous sections by two Danish data-sets on diabetes incidence. One
set comprises all Danish males born in 1950-64, including diabetics with onset before
age 20. The other set of data is methodologically somewhat more complicated. All
surviving diabetics on 1 July 1973 in Fyn county, Denmark, were recorded and their
(time, age) of onset were registered. For those with onset before age 31 years
additional mortality data made a retrospective estimation of diabetes incidence
feasible.

The exposition considers no other heterogeneity of the population than that
described by time and age, although the regression models in §§4 and 5 could easily
be amended to accommodate other (known) covariates. From the elaborate practical
experience with the piecewise constant intensity models it is well known that residual
heterogeneity may lead to overdispersion relative to the simple ‘Poisson’ models
surveyed in §4. Efforts of incorporating such effects in models with continuously
varying intensities are much more preliminary, and in particular little practical
experience exists.

2. The Lexis diagram: history and some deterministic theory

Lexis (1875, Fig. 1) suggested the graphical representation in figure 2. Here the
abscissa is time of birth (‘cohort’ as we would say today) and the ordinate is age.
Individuals are represented by vertical lines, and deaths happening at the same
(calendar) time are on a line with slope —1 (an ‘isochronic’ line). The original Lexis
diagram was thus a (cohort, age)-diagram rather than the (time, age)-diagram used
today and exemplified in figure 1. Lexis pointed out that perhaps the right-angled
basic triangles were less useful than equilateral triangles that would be obtained by
inclining the ordinate axis to get a 60° angle to the abscissa, cf. figure 3, which is
Lexis’s Fig. 2. In the equilateral triangles, one year is represented by the same length
whether it is travelled in the cohort or birth time direction for fixed age (horizontally),
in the age direction for fixed cohort (angle 60° to abscissa) or in the age direction for

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 2. Lexis’s diagram (Lexis 1875, fig. 1).
Figure 3. Lexis’s equilateral diagram (Lexis 1875, fig. 2).

fixed (calendar) time (angle 120° to abscissa). In Lexis’s diagram the latter direction
has one year represented as /2 times that of the other two; in the modern Lexis
diagram the age for fixed cohort direction is the longer.

Lexis’s main use of the diagram was in providing a very detailed and careful
discussion of the various categories of living and dead, delineated by rectangles or
parallellograms in the diagram. The three principal sets of dead were defined as
follows. Dead individuals in a first principal set were born in a given period and died
between given age limits; for example, the rectangle bchg in figure 2. In modern Lexis
diagrams this corresponds to the parallellogram

Dead individuals in a second principal set were born in a given period and died in a
given period; for example, the parallellogram ekom. In modern Lexis diagrams this
corresponds to the parallellogram

Finally, dead individuals in a third principal set died in a given period, between given
age limits, example: the parallellogram peig. In modern Lexis diagrams this
corresponds to rectangles. Of course all principal sets are unions of certain triangles:

in Lexis’s diagram
N N

in modern Lexis diagrams

A = U

Phil. Trans. R. Soc. Lond. A (1990)
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(and in the equilateral diagram

and ,

note again the aesthetic superiority) which are called lower and upper clementary sets
(or elementary triangles). Lexis went on to discuss, equally carefully, the possibilities
of obtaining exact counts in the various categories from censuses, and which
approximations are necessary in some cases. (The Lexis diagram is still essential in
this capacity in demography, in textbooks as well as in daily practice.) For
populations with more than one change of state (Lexis studied the example entering
and dissolving marriage) Lexis introduced a three-dimensional diagram yielding a
‘stereometric’ representation. The latter was introduced ‘primarily of theoretical
interest’” and is still rarely met (although I know that Dr P. Cooper uses it for
teaching the able-disabled death transitions to actuarial students in Southampton).

Although Lexis concluded his text with a characteristically precise and careful
chapter on the application of probability to population change, he did not present a
proper stochastic theory for the Lexis diagram.

The formalization of population mathematics as well as careful and specific advice
for collection of vital statistics was a topic of research for several of Lexis’s
contemporary Germany statisticians. Lexis himself mentioned primarily Knapp
(1868), who gave a stringent continuous-time theory using differential calculus, and
introduced the three principal sets.

Zeuner (1869) gave a particularly elegant exposition including a series of graphs of
a cohort-age plane with a continuous curved surface in the third dimension,
representing the density of the living. Thus, for example, cohort and period survival
curves are obtained as intersections of this surface with the relevant vertical planes.
This surface was recently discussed by Arthur & Vaupel (1984). By using the modern
convention of a (time, age) diagram, let the non-negative differentiable function
n(t,a) describe population density at (time, age) = (¢,a). Distinguish between the
three directions of change: time separately, age separately, and time and age in
tandem. That is, define the age-specific growth rate

r(t,a) = [On(t, a)/0t]/n(t, a),
the age intensity
v(t, a) = —|0n(t,a)/0a]/n(t, a)
and ut,a) = (—[On(t+x,a+x)/0x]/n(t,a)),_

where in a closed population, x is simply the mortality rate. More generally, u gives
the relative rate of change in the density of the population in the cohort direction.

It is now an elementary mathematical fact that u(t,a) = v(t,a)—7(t,a) and it is
readily seen that this is equivalent to the so called Von Foerster equation of
population dynamics

on(t,a)/0t+0n(t, a)/0a = — u(t,a) n(t, a)

(McKendrick 1926, example 9; Von Foerster 1959). Arthur & Vaupel went on to
derive not only classical equations from deterministic stable population theory, but

Phil. Trans. R. Soc. Lond. A (1990)
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Statistical inference in the Lexis diagram 491

also general relations in population dynamics outside of the restrictive stable
population framework.

3. Point processes on the Lexis diagram

In the usual Lexis diagram (figure 1) individual lives are represented as line
segments between (time at birth, 0) and (time, age) of death. Brillinger (1986)
assumed that the births happen according to some (possibly non-homogeneous)
Poisson process with intensity function f(t), and that the life lengths are independent
random variables, independent of the birth process, with distribution specified by the
death intensity u(t,a) given by

Pa<X<a+h|XZal=xula)h

for t = 0+a and h small, where X is the life length of a person born at time o.
Brillinger showed that under these assumptions the bivariate point process of deaths
in the Lexis diagram is Poisson with intensity function

a

/\(t’a) = ﬂ(t_a)lu’(t’a) exp{_‘[

0

ﬂ(t—a+y,y)dy}-

Of course these assumptions are not all strictly reasonable for human populations:
in particular, no account is taken of the dependence between individuals introduced
by the human reproduction process. But Brillinger (1986) argued convincingly that
they provide a suitable framework for a sampling theory on the Lexis diagram, in
Brillinger’s exposition concentrated on classical demographic rates. It should be
emphasized that the Poisson distribution in Brillinger’s context derives from the
postulated poissonian birth process. Thus there is no connection either to the ‘rare
disease’ assumption or to the Poisson likelihood mentioned in §4 below.

Keiding (1990) extended Brillinger’s model also to allow (irreversible) morbidity.
This provided a framework adapting modern continuous-time survival analysis to
the estimation of incidence and mortality from the cross-sectional information on the
age distribution of healthy and diseased, possibly supplemented with retrospective
information on age at onset, for the survivors in the cross-sectional sample. We shall
discuss a concrete calculation of this type in §6. It was mentioned in §2 that Lexis
(1875, ch. IV) himself introduced the additional structure of an irreversible transition
(in his case marriage rather than morbidity) and derived the logically corresponding
three-dimensional Lexis diagram.

While Brillinger’s assumption that a person born at (- and aged @ has
(continuous) death intensity u(¢, @) and that individual life lengths are independent
is canonical for almost any stochastic model on the Lexis diagram, the assumptions
on the birth process are more debatable, and indeed one might often prefer to
condition on the actually realized births.

A more general point process description of the Lexis diagram was given by
Capasso (1988), motivated by Kendall’s (1949) age-dependent birth-and-death
process. By using the Lexis diagram formalism, in contrast to Capasso, we may
paraphrase his approach as follows. The population is described by the random
measure U on the Lexis diagram in the sense that

j U(t, da)
4

Phil. Trans. R. Soc. Lond. A (1990)
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492 N. Kevding

denotes the number of individuals alive at time ¢ with age € 4. (That is, the number
of intersections with lines in the Lexis diagram of a vertical line segment at ¢ covering

ages €A4.) Similarly,
j U(dt, a)
T

denotes the total number of individuals of exact age a at times € 7. In particular,
B(dt) = U(dt, 0) is what could be termed the ‘birth measure’. (Capasso considered in
effect a time-left-truncated Lexis diagram and therefore also worried about
individuals who had not been followed from birth; we shall not discuss this added
complication.)

Capasso used this structure to derive the classical Lotka renewal equation from a
stochastic model; his main interest was, however, to obtain martingale dynamics for
statistical inference, as we shall discuss in §5 below. Earlier continuous-time
stochastic population models generalizing the age-dependent birth and death
processes were discussed by Keiding & Hoem (1976) (cf. Jagers 1975, ch. 8), who also
discussed the renewal equations.

4. Piecewise constant intensity models

Assume that the death intensity u(f, @) is constant (= p) over some region £ in the
Lexis diagram. For each individual ¢ let 7} be the time lived in £, geometrically
(4/2)7! times the length of the intersection of £ and the lifeline of ¢. If ¢ died in £,
the likelihood contribution for u is pexp (—uT}), if ¢+ did not die in @ (perhaps still
being alive), it is exp (—u7;). In general, taking D; as the indicator that ¢ die in Q,
the likelihood based on observation of one individual 7 is yPiexp (—u7}) and that
based on independent individuals, all with death intensity s,

L(u) = p” exp (—uT),
where D = 2 D, is the number of deaths in 2 and 7' = X 7] the total time lived in Q.
The maximum likelihood estimator is i = D/T with large-sample variance approxi-
mation estimated by Var (i) = {I(u)}* = D/T? where I(u) = —d®log L(u)/du® = D/u?
is the observed information.

This analysis holds whether or not the individuals are assumed to be born in
Brillinger’s Poisson birth process described in §3, as long as they are independent. In
Brillinger’s case D is Poisson distributed, otherwise not necessarily so.

The likelihood L is the same as would have been obtained by assuming D Poisson
distributed with mean x7" and the model based on L and its generalizations are
therefore often called Poisson (regression) models. However, in our context 7' is a
random variable and the conditional distribution of D given 7' is not Poisson, not
even in Brillinger’s case.

In practice, aggregate data from official vital statistics are often used in which case
T, the total time lived in ©, will not be directly observable. For the three classical
‘principal sets’ in the Lexis diagram, cf. §2, Hoem (1969) gave specific approximation
formulae for 7" based on various assumptions on observational patterns much in the
style of Lexis as mentioned in §2 above. Consider as an example the mortality in 1990
of persons born in 1920, and disregard migration. This is Lexis’s (Knapp’s) second
principal set of dead, corresponding to the parallellogram of figure 4. If the total time
lived (7') is not directly observed, perhaps the number M of persons attaining age 70
in 1990 is available (that is, the number of lifelines crossing AB in figure 4). A

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 4. Approximation of the total time lived. If the total time lived in the parallellogram ACBD
is not available, an approximation may be obtained by the number of life lines crossing AB times
1 year. If even this is not available, an approximation would be the average of the number of life
lines crossing CA and BD respectively.

reasonable approximation would then be 7' = M - 1 person years. If M is not available,
perhaps the number Lgy(90) of 69 year olds at the start of 1990 and the number
L,,(91) of 70 year olds at the start of 1991 are available (number of lifelines crossing
CA and BD respectively). Approximate 7' by {Lg(90)+L,,(91)}/2(x 1).

It is obvious that the choice of principal set over which to assume the death
intensity constant is arbitrary in the first place. This is one of the complications
behind the widespread use of the Poisson regression models for describing disease
incidence, particularly cancer incidence.

Continuing to use the language of mortality assume now that a tessellation of the
Lexis diagram in terms of some principal set is given and that u, , represents the
constant death intensity around (time, age) = (£, @), which for this purpese varies
across some suitable (not necessarily rectangular) lattice. To obtain further insight
into the variation of u, , across the lattice a multiplicative age—period model

:u’t,a = atﬂa

can be useful. Or perhaps an age—cohort model

M0 = yaac’ c=t—a

is more suitable. The obvious general possibility of an age—period—cohort model,

Pt a = € ¢a Kes

has been discussed at some length, particularly in cancer epidemiology, see Osmond
& Gardner (1982), who also surveyed earlier work, and Clayton & Schifflers (1987).
All of these models preserve the Poisson-type likelihood derived at the beginning of
this section and are therefore direct special cases of generalized linear models in the
sense of McCullagh & Nelder (1989).

However the age—period—cohort model has a non-trivial identification problem.
Assume for simplicity that a rectangular lattice of parameters u, ,, t=1,...7,

Phil. Trans. R. Soc. Lond. A (1990)
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a=1,...,Aisgiven. Thenc = t —a varies across the 4 + 7'— 1 values —4 +1,...,7—1,
and the total number of parameters ¢, ¢,, «, is 24 +27—1. But the dimension
of the model is only 24 4 27— 4, because of the three independent constraints that

derive from
€ PaKia = (€ En'NPa E ) (K TVET).

This mathematical fact considerably complicates interpretation of the parameter
estimates, and many approaches have been suggested. One of them is to go back to
the elementary triangles in the Lexis diagram ; the events are usually known by exact
day of (time, age) already and the necessary approximations of time lived (if
necessary) are not much worse than before. If it is maintained that s, , is still
constant across the two elementary triangles into which the relevant principal set has
been split, then the age—period—cohort model does become fully identifiable.
However, Clayton & Schifflers (1987) argued very carefully, and Carstensen (1990)
provided additional mathematical documentation, that there are several objections
to this approach, the most important being that the average age, time and birth time
of individuals (and of cases) differ between the two triangles.

In my view the piecewise constant intensity models have been stretched to their
limit here. It is time to develop statistical methods for the Lexis diagram based on
continuous time; this is the topic of §5.

5. Non-parametric continuous-time statistical analysis

The recent development of non-parametric survival analysis in continuous time
has been much influenced by the approach via counting processes and martingales
pioneered by O. O. Aalen, see Jacobsen (1982) and Andersen & Borgan (1985) for
reviews. I briefly review this approach below.

In the simplest situation Aalen considered a univariate counting process N(t) with
intensity process a(t) Y(t), that is,

is a martingale. The predictable process Y(¢) usually denotes a ‘number at risk’ at
time ¢. Heuristically we ignore the martingale ‘noise’ to obtain an estimating
equation

dN(t) = a(t) Y(t)dt,
yielding the estimator

a(t)dt = dN(¢t)/ Y(¢).

More formally, use the Nelson—Aalen estimator,

ity = f LX) > 03 gy,
0

't
as estimator of At = f a(s) ds.

Properties of this estimator are easily available from the fact that ,[;’—- p*is a
martingale, where

pE() = ft[{Y(S) > 0} a(s) ds.

0
Phil. Trans. R. Soc. Lond. A (1990)
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Asymptotically, one will usually have Y(¢) > 0 for all ¢, and hence £*(¢) = f(¢).

A Dbasic trick behind this non-parametric estimator is that the use of the
cumulative intensity allows a discrete measure as estimator of an absolutely
continuous one; the cons1stency and asymptotic normality results guarantee the
coherence, and plots of f(t) are also directly interpretable. However, to arrive at an
estimator of «(t) itself, some form of smoothing is required, such as the kernel
estimator (Ramlau-Hansen 1983)

=3 (5o

where K(x) is a kernel (probability density symmetric about 0) and b the bandwidth.
In our situation we are concerned with drawing inference about an intensity
depending on the two time parameters (calendar) time and age. One might therefore
want to know what happens to Aalen’s approach in two time dimensions.
From an absolutely continuous bivariate distribution function F with density f
Pons (1986) considered what she termed the ‘two-dimensional hazard function’
afs, t) = f(s,t) /{1 —F(s,t)}; the cumulative hazard is then

f(s, 1) =f J a(u,v)dvdu.

s [t
Since I{SSS,TSI}—J f]{SZu,TZv}a(u,v)dvdu
0J0

is a weak martingale, important parts of Aalen’s one-dimensional theory may be
retained in two dimensions. For n independent replications the bivariate counting
process

N(s,t) = % IS

has compensator with respect to the product filtration of the self-exciting filtrations
generated by S,,...,S, and 1},..., 7,

J f a(u, v) Y(u,v)dvdu,

where Y(s,t) = 2I{S, > s, T, > t}. Hence
f f‘I{Y ) > O}dN(u ”)
0

may be taken as estimator of f(s,¢), again studymg ﬂA — f* with

F*(s,t) = fs Jtl{Y(u, v) > 0} a(u,v)dvdu

and utilizing that g* = ﬂA for large populations. (It is important to notice the
interpretation of dN(s,t): this jumps one when, for some 4, §; = s and 7; = {. When
the formalism is generalized to censored variables, this implies that f§ is based only
on the doubly uncensored pairs (S;, 7}).)

Pons proved asymptotic unbiasedness and asymptotic normality of ﬂ and derived
a test for independence of § and 7" based on f.

Dabrowska (1988) pointed out that Pons’s approach uses only some of the
information (as explained above) and also that the bivariate distribution function ¥

Phil. Trans. R. Soc. Lond. A (1990)
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cannot be recovered from o : indeed the marginal distributions F(s, co) and #(0,¢)
are also required. Dabrowska obtained for bivariate censored data a non-parametric
estimator of the bivariate distribution function (s, ) by combining Pons’s estimator
and the standard Kaplan—Meier estimators of the marginal distributions; she proved
consistency of this estimator.

(@) Capasso’s proposal for Aalen theory on the Lexis diagram
Pong’s estimator solves the heuristic infinitesimal estimating equation

a(s,t)dsdt = dN(s,t)/ Y (s, ),

which directly generalizes Aalen’s idea. For the Lexis diagram, let N(¢, ) denote the
number of deaths by time ¢ to individuals born at time {—a. Then

t

N(t,a)—f (s, a—t+8)Y(s,a—t+s)ds
0

is a (local) martingale with respect to the filtration spanned by the whole population

process before time ¢, and Y(¢, @) is the number of individuals born at time {—a and

alive (in more general settings, and uncensored) at time ¢.

Capasso (1988) attempted to mimic Aalen’s approach directly by using the
timati ti
estimating equation AN(t, @) = u(t. @) Y(t,a)
fi(t,a) = dN(t,a)/ Y(t, )

as usual interpreted in a cumulative fashion:

to obtain an estimator

4. [PHY(t a) > 0}
ﬂ(t) - J:) Y(t,a) N(tada’)a
as estimating plt) = foo,u,(t,a) da.

In the original model with continuous intensity u(¢,a), and assuming also a birth
process with continuous intensity, this, however, degenerates: Y(t, a) will always be
0 or 1 and g(t) will just count the number of deaths at exact time ¢, no matter how
large the population. Capasso assumed discrete initial distributions to obtain
asymptotic results. (Note that this may be said to violate the basic absolute
continuity assumption that Lexis (1875, p. 26) formulated very specifically. ‘As we
may, for the distinction between individuals, only use the three timescales, and since
one cannot speak about a set of simultaneously born, we have to base ourselves either
on a set of simultaneously living or a set of living at a certain age.” As 1 emphasized
in §3, the latter two concepts are directly covered by the absolute continuous point
process, the former is not.) Alternatively one might interpret Capasso’s idea in the
context of piecewise constant intensities, in the spirit of §4 above.

One way of understanding the difficulties in establishing an Aalen theory in the
Lexis diagram is that although the diagram is two-dimensional, all movements are
in the same direction (slope 1) and in the fully non-parametric model the diagram
disintegrates into a continuum of life lines of slope 1 with freely varying intensities
across lines. The cumulation trick from Aalen’s estimator (generalizing ordinary
empirical distribution functions and Kaplan & Meier’s (1958) non-parametric
empirical distribution function from censored data) does not help us here. We have
to directly assume smoothness across life lines, as we shall do in the next section.

Phil. Trans. R. Soc. Lond. A (1990)


http://rsta.royalsocietypublishing.org/

/\\

A \
) |
P

yi

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

3

A

B
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Statistical inference in the Lexis diagram 497

(b) Non-parametric regression analysis in the Lexis diagram

McKeague & Utikal (1990) followed the important paper by Beran (1981) in

studying what in the present context amounts to

a-+w a-+w

Nyt a) = N(t,u)du, Y,,ta)= f Y(t, u) du,

a—w a—w
so that N,,(t, @) counts the number of deaths before time ¢ to those born in [t —a—w,
t—a+w] and Y,,(t,a) counts the number born in that interval and still at risk at time
t—. Still keeping a fixed, define the Nelson—Aalen type estimator

- _ [ I{Y yls,a) > 0}
M a) = fo Yy(s,a)

1 t—s\
ZJ‘K(T)M(dS,a/)

and, finally, smoothing in the age direction yields a smooth estimator

- if}?(af“)/a(t,u)du

of K- McKeague & Utikal went on to derive cons1stency and asymptotic normality for
M, /i and jfi. As usual this was done by assuming that some parameter n (which we
can take as some population size) increases to infinity, while w0, b0, b0 at
subtly balanced rates. Of particular conceptual importance are the conditions of
asymptotic stability of Y, (¢, a)/(nw) which expresses the ‘density’ of the cohort of
individuals born at time t—a (cf. Zeuner 1869; Arthur & Vaupel 1984). The
asymptotic results yield approximative standard errors, in particular j(f,a) has
approximative standard error o(t, @)/(nw?), where an estimator of

= h(t, a)fKQ(u)du
_nw w(ds, a)
(T )

McKeague & Utikal obtained their final smoothed estimator &(¢,a) via three
smoothings. First the original counting process N(t,a) and at risk process Y(t,a) are
smoothed in the age direction, using essentially a uniform kernel with bandwidth w.
The resulting Nelson—Aalen type (discrete) estimator dM(t, ) is then smoothed in the
time direction to obtain f(¢, @), which is finally smoothed in the age direction.

At least in the present Lexis diagram context it would seem more direct to do just
one bivariate smoothing, as follows. Let K, (t,a) and K(¢,a) be bivariate kernel
functions (probability densities) and b, and b,y and bandwidths and define

x(t,a) =70 JJK( 4 u)Y(s,u)duds,

t—s a—u \IK{Y (s, u) > 0}
fg(t a) b2 ij ( . ) Y5, ) N(ds, du).
)
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I conjecture that suitable regularity conditions could be worked out to ensure that
iy 1s consistent and asymptotically normal. In the application of §6a Y is so large
that it seems safe to disregard its random variation in a first approximation to an
estimate of var{fi.(¢,a)}; indeed we use

o (=8 a—u\I{Y(s,u) > 0}
2(t,a) b2 f K3 ( ) Yo, ) N(ds, du).

(c) Age—period models in continuous time

As discussed in §4 above for piecewise constant intensity models, there has been
considerable interest in multiplicative decompositions of death intensities u(t, @) or
disease incidence «(f,a) into products of factors depending only on time and age
(age—period models), time of birth and age (age—cohort models) or time, time of birth
and age (age—period—cohort models). In this section I shall indicate some possibilities
for obtaining similar decompositions in the models with continuously varying
intensity. We concentrate on the age—period models as an example.

The multiplicative decomposition

mt, a) = (1) Aa)
was studied by McKeague & Utikal (1988). Their study was based on the double

cumulative intensity
t (a
M(t,a) = f j (s, u) duds,
0J0

ta thudu—fJ’I{Y sa>0} Ny, (ds,a).

The marginal cumulative intensities

with estimator

may be estimated by
Ala) = M (0, a) M (0, 00), E(t)=M(t, o)

(resolving the indeterminacy in the parametrization by imposing the constraint
A(o0) = 1). McKeague & Utikal proved asymptotic results for these estimators, in
particular for the residual process .#—AZ that may be used for testing the
multiplicativity hypothesis.

In my view the suggestion, essentially of using the marginal cumulative intensities
as estimators, will in practice put some rather restrictive implicit orthogonality
conditions on the design. As we shall see in the examples in §6, these conditions are
sometimes far from fulfilled.

Other suggestions for fitting the ‘non-parametric’ multiplicative intensity model

wt,a) = Afa) &(1)

are based on likelihood methods generalizing those of the Cox (1972) ‘semi-
parametric’ regression model. Before discussing these, we want to dwell a little on
the Cox model itself.
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(d) The Cox model in the Lexis diagram : Sellke & Siegmund’s approximate
martingale construction

In clinical trials with staggered entry, patients are put on trial as they are
diagnosed and followed until death (or recurrence of disease or some other endpoint)
or censoring. The time variable of interest is usually duration on trial rather than
calendar time, but information is accumulated in calendar time, for (greatly) varying
durations since patient entry. A remarkable study of martingale issues connected to
the use of the Cox model in this situation is due to Sellke & Siegmund (1983) whose
paper is much easier to read when one sketches the obvious (time, duration) Lexis
diagram along the way.

To use the Cox model for obtaining an age—period model one has to choose one time
variable as basic (to be modelled in the non-parametric part of the model), the other
will then enter as (‘time-dependent’) covariate to be modelled in the parametric
regression part. Usually one would assume the age variation to be rather more
dramatic than the secular trend in calendar time, and we shall assume accordingly
that

ult,a) = A(a) exp (B-2(t))
where z(t) is a vector of (known) functions of time ¢, such as ¢, £2, log,, ¢, ete. Note that
z(t) is ‘age-dependent’ in the sense of the Cox model. Let z;(a) be z evaluated at the
time at which individual ¢ is of age a.

The statistical analysis of the regression part of the Cox model is based on the

partial likelihood
Ly, =T1[exp (B zi(a;))/ T exp(f-z(a;))]
a; JeR;
where the ‘risk set’ R, contains those individuals alive and uncensored at age a, and
where the product is over the distinet ages of death a,.

Sellke & Siegmund phrased their discussion in terms of a scalar covariate function
z, hence a scalar regression parameter . The basic quantity is the score process (the
logarithmic derivative of L) i(t,a, B), which is a martingale in a for each fixed ¢ with
respect to the filtration {#, ,,a > 0} where &, , is generated by events observed by
time ¢ and of age less than or equal to a. In order to study the joint behaviour of the
process at different times (which is at least necessary for the asymptotic theory) it
is also necessary to study I(¢, a, #) as function of ¢; it is not a martingale with respect
to #, ,, but Sellke & Siegmund constructed an approxnnatlng martingale and went
on to prove asymptotic properties of the maximum partial likelihood estimator ,6’ for
large ¢.

(e) Non-parametric regression modifying the Cox model

We shall briefly survey some recent suggestions for modifying the Cox model from
‘semi-parametric’
ut, a) = Aa) exp (B-2(1)),
to non-parametric, making fewer assumptions on the factor describing the
dependence on time
t, @) = Aa) §(t) = A(a) expn(t).

Thus Thomas (1983) developed a Grenander type isotonic estimator of £(¢), assuming
it to be increasing. Thomas’s context was cancer incidence at dose f, where the
monotonicity constraint will usually be more natural than for the time effect in the
Lexis diagram.
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Hastie & Tibshirani (1986) fitted their ‘generalized additive models’ using one of
two alternative data analytic techniques, called local scoring and local likelihood,
respectively. Both methods are based on Cox’s partial likelihood which in the age-
dependent generalization necessary here takes the form

Ly = Hlexp[niti(a); 1/ X exp[nit @)} 1],
a; JeR;
where t;(a) is the time at which individual ¢ is of age @ and R, as usual denotes
the individuals at risk at the age @, where individual ¢ was observed to die. Let
I =log,, L, as before, and let C; = {k:veR,} (the risk sets containing individual 7),
0, = 1 if person ¢ dies (in contrast to becoming censored), then

al
m = 9;— exp [p{t;(a;)}] kEZCl 1/]'53,6 exp [n{tj(ai)}] ,

O explit(ag)] = 1/ S exp [t (@]

Spltagyr P 2 ) 5 explnitie

+exp [2nit(a)i] X 1/[ Z expyity(a,)} I
keC;  jeRy
The local scoring method now uses some ‘scatterplot smoother’ & in a
Newton—-Raphson type iteration:

dl/
@) = Y{v(a) /dy }

C P(d/Ap?)

Hastie & Tibshirani have developed the GAIM software (available in various
versions) to perform these calculations as well as the local likelihood technique
(Tibshirani 1984). In this algorithm log,,#(z) is assumed to depend linearly on z
locally. Accordingly, for each 7 a local partial likelihood is formed by including in the
product only the nearest neighbouring z;. The ith local partial likelihood yields a
regression parameter estimate f;, and 7(f) is estimated by some interpolation
procedure, given these local slopes of log,,%(¢).

O’Sullivan (1988) proposed a penalized partial likelihood approach as an alternative
to Hastie & Tibshirani’s data analytic procedures, i.e. assume 7 twice differentiable
and maximize

Syl —log 3 exp yitfaol)—x [(i@)*da,
@ J€Ly

where 7 denotes second derivative and the penalty parameter x > 0 regulates the
smoothness of 7. O’Sullivan noted that any solution to this minimization problem is
a cubic spline with knots at {t,(a;)}. In a further contribution O’Sullivan (1989)
proved asymptotic convergence results for the penalized partial likelihood approach,
although to be applicable to the present context, some generalization to time-
dependent covariates is needed, and the difficulties pointed out by Sellke & Siegmund
would seem to be at least as large here.

(f) Ogata & Katsura’s empirical Bayes penalized likelihood approach

As an alternative to the kernel smoothing methods originating with Beran (1981)
and for the present purpose reviewed in §5b above one might mention an algorithm

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 5. Estimated yearly (time, age)-specific diabetes incidence rates for
Danish males born 1950-64, ages 0-19 yrs.

due to Ogata & Katsura (1988) based on penalized likelihood, choosing the penalty
parameter by empirical Bayes.

Ogata & Katsura’s context was that of a marked point process in the plane (their
main motivation being the geographical location and severity of earthquakes). In our
context the marks would usually be disregarded (although see the example in §6b)
and the (inhomogeneous) Poisson process likelihood is

I plt;, ;) exp{ - f
i=1

Q

(o) dt da},

where (¢;, ;) are the points in the study region £ in the Lexis diagram where deaths
are observed. The intensity is expressed by the cubic B-spline bases F; and G; with
equally spaced knots,

+3J43
logop(t,a) = 2 X %‘sz‘(t) Gj(a’)a
i=1 j=1
and the task is to estimate {y;;}. Ogata & Katsura imposed two roughness penalties
@, (1) and P,(u) and maximized the penalized log likelihood

log L — 1, @y (1) — 15 Po(pt)
with respect to {y,;}. The roughness parameters 7, and 7, were chosen by interpreting
the penalty terms in the penalized log likelihood as deriving from a prior
distribution with (hyper-)parameters 7, and #,. This distribution is assumed
multivariate normal, allowing a (numerically involved) maximum-likelihood esti-
mation also of ; and 7,.

6. Examples

In this final section two sets of data concerning the (time, age)-variation of
diabetes incidence will be briefly presented: a prospective (historical) study and a
retrospective study, and some preliminary nonparametric estimation calculations
reported.
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Figure 6. Estimated yearly (time, age)-specific diabetes incidence rates per 10° person years for
Danish males born 1950-64, ages 0-19 yrs.

(a) Prospective data based on the Danish national service conscript registry

From the eight Danish male birth cohorts born 1949-56, Green et al. (1980)
identified those who had diabetes mellitus (pn) before the age of 20, by going through
the files of the Danish national service conscript authoritics. Since pm leads to
unconditional rejection from military duty, these files are expected to have high
reliability on pm. Indeed, when supplemented with information on cause of death
from the computerized national registry of deaths ascertainment was evaluated to be
at least 95%. Green et al. (1990) later collected data from a further eight cohorts in
a similar fashion. Below we shall use the data from the 15 cohorts 1950-64.

The basic estimation was a bivariate smoothing such as discussed in §5b as

P 1 t—s a—u\I{Yg(s,u) >0}
Ag(t,a)= by fJKN< by by ) Y (s, ) N(ds, du).
We used a bivariate Epanechnikov kernel

Kz, y) =2n"Y(1—a?—y?%, 2*+y’<1

and bandwidth by = 3 years; estimates closer than three years to the boundary were
obtained by reflection. The expression Y for the size of the risk set was not obtained
by bivariate smoothing as suggested in §5b; instead the average number of boys alive
and unaffected by pm in an elementary 1 x 1 year square of the Lexis diagram was
derived from the very accurate figures of time lived (corrected for emigration, cf.
Andersen & Green (1985)) as derived by Green et al. (1990) for their Poisson
regression analysis.

Figures 5 and 6 show the estimated (time, age)-specific incidence rates. Since the
data are really collected in a (cohort, age)-rectangle, they are presented in a (cohort,
age)-Lexis diagram (similar to Lexis’s original diagram). We see an increase with
age until puberty and then a decrease, also an increase with cohort, particularly for
the teenagers. Figures 7-9 detail these tendencies by following the trends along line
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Figure 8. Estimated yearly diabetes incidence rates per 10° person years for Danish males plotted
as a function of onset year for fixed onset age, with pointwise approximate 95 % confidence limits.
Age =3 (a), 6 (b), 9 (¢c), 12 (d) 15 (e), 18 (f).
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40 -
[ (a) ®)

incidence
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Figure 9. Estimated yearly diabetes incidence rates per 10° person years for Danish males plotted
as function of onset age (and hence onset year) for fixed time of birth (‘cohort’), with pointwise
approximate 95% confidence limits. (@) 1953 cohort, (b) 1956 cohort, (c) 1959 cohort, (d) 1962
cohort.

segments with slope—1 (Lexis’s isochronical lines, age effects for fixed calendar
time), parallel to the cohort axis (time effects for fixed age) and parallel to the age
axis (age effects for fixed cohort). In the modern Lexis diagram the three figures
correspond to line segments that are vertical, horizontal and with slope 1 respectively.
95 % approximate pointwise confidence limits are derived from ¢%(t, a) as postulated
in §5b.

Green et al. (1990) obtained a statistically acceptable fit of a classical age—period
multiplicative piecewise constant intensity model, with clearly significant different
age—effects having a maximum in the 12-15 year age group and a clearly significant
increase over time that seemed to stabilize during the last approximately twelve
years of observation 1973-84.

Non-parametric continuous-time multiplicative intensity analyses along the lines
of §§5¢ and 5e are in preparation. Note that data are available in a parallelogram
that would make the use of McKeague & Utikal’s (1988) suggestion unfeasible for an
age—period model.
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onset year

onset age

Figure 10. Time-age-specific onset of disease for male diabetic patients alive in Fyn County on July
1, 1973. The area of the circular disks is inversely proportional to the survival probability until that
date. The hatched area covers the direct registration of incident cases based on conscription records
(Keiding et al. 1989, fig. 3).

30 (@)

Do
(=]

TS A e |

—
(=]

(=3
4

incidence
)
S

20 .
10 //"'\\\_///’\\\_’/_ J
—r T T T T T L e e e e L e e s e |
0 10 20 30 0 10 20 30
onset age

Figure 11. Estimated yearly diabetes incidence rates per 10° person years in Fyn County plotted
as function of onset age (and hence onset year) for a fixed cohort. , males; ~——, females. Direct
estimates for males are based on follow-up for the whole of Denmark (Green & Andersen 1983)
marked by filled rings (Keiding et al. 1989, fig. 11). (a) 1923 cohort, (b) 1933 cohort, (c) 1943 cohort,
(d) 1953 cohort.

(b) Retrospective data based on prescriptions in the Danish National Health Service

Based on prescriptions, Green et al. (1981) traced 1499 insulin-dependent diabetic
patients in Fyn County (population approximately 450000) in Denmark, as of July
1, 1973. The case registration rate was close to 100 %. Keiding et al. (1989) studied
the 710 (410 males and 300 females) who had their disease diagnosed before or at 30
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Figure 12. Estimated diabetes incidence rates in Fyn County for males 0-30 yrs old,
during 1933-73, calculated by Professor Y. Ogata using penalized likelihood.
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Figure 13. Estimated diabetes incidence rates per 10% person years in Fyn County plotted as
function of onset age (and hence onset year) for fixed cohort. Males; , median ; ——, mean. One
standard error limits are indicated. Calculated by Professor Y. Ogata using penalized likelihood,
see figure 11 above. (@) 1923 cohort, (b) 1933 cohort, (¢) 1943 cohort, (d) 1953 cohort.

years and after 1 January 1933. For each of these patients the time of disease onset
(as certified by a doctor) was ascertained from patient records, so that a retrospective
(time, age) pattern of diabetes incidence is available over the (Jan. 1933, June
1973) x (0, 30 years)-rectangle in the Lexis diagram (see figure 10). Of course,
estimation of diabetes incidence along the lines of the previous section requires
correction for the retrospective nature of the data, indeed each case should be
weighted by 1/p,(t, @) where p,(t, @) is the probability for a diabetic patient of sex s
with onset at time ¢ and age @ of surviving until 1 July 1973 (see the areas of the disks
in figure 10). Estimates of p,(t, @) were derived from the data of Ramalau-Hansen et
al. (1987), and the estimation itself was then done as explained in the previous
section. Figure 11 (analogous to figure 9 above) shows the age trends for four selected
cohorts. Y. Ogata (personal communication) reanalysed the data using the Ogata &
Katsura (1988) empirical Bayes penalized likelihood approach briefly mentioned in
§5f. Ogata did two independent smoothings: one (by penalized gaussian log
likelihood) of the weights #(t,a)™, and another (by spatial non-homogeneous
Poisson) of the incidence data. The final surface was obtained by multiplication and
is shown in figure 12 for males. The trends for the same four selected cohorts as in
figure'1 are shown in figure 13, this time incorporating ‘standard error limits’, that
is, estimate + 1 estimated standard error. As was to be expected, the latter are rather
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wide, particularly in the early part of the period. And they do not include the
estimation uncertainty of the p(¢, ).

The main qualitative findings of this exercise were a clear increasing secular trend
in diabetes incidence over the studied period, particularly for males, and an increase
in age of diabetes incidence with a tendency to a local maximum around puberty.
There was some time (time, age)-overlap between these retrospective data and the
prospective data (from the whole of Denmark) reported in the previous section, and
for these (time, age)-combinations the agreement was surprisingly good (figure 11).

T am grateful to Martin Jacobsen for several important conversations on point processes on the
Lexis diagram, to Anders Green and Per Kragh Andersen for permission to quote from their
upcoming paper (Green et al. 1990), to Y. Ogata (Tokyo) for doing the reanalysis of the
retrospective Fyn data and for permission to quote from it, to Vincenzo Capasso, Bendix
Carstensen and Ian McKeague for supplying preprints of their results, and to Rob Tibshirani for
information and instructions regarding the GAIM programs.
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